
On computing arbitrary entries
of the inverse of a matrix

François-Henry Rouet

Joint work with: Patrick Amestoy and Bora Uçar

Université de Toulouse, INPT(ENSEEIHT)-IRIT, France

SIAM Conference on CSC, 29-31 Oct 2009, Monterey, CA



Context of our study

Context
Some applications require the partial computation of the inverse of a large,
sparse matrix.
Examples:

Computing the variances of the unknowns of a data fitting problem =
computing the diagonal of a so-called variance-covariance matrix.
Computing short-circuit currents = computing blocks of a so-called
impedance matrix.
Approximation of the condition number of a symmetric, positive definite
matrix.
. . .

F.-H. Rouet On computing arbitrary entries of A−1 2 / 23



Partial computation of A−1

Central idea

Computing a set of entries in A−1 involves the solution of several linear
systems. An efficient algorithm has to take advantage of the sparsity of A and
the right-hand sides.

Approach

1 Graph representation of the problem.
2 Computing a single entry: exploit sparsity.
3 Computing a set of entries: a combinatorial problem.
4 Characterization of a solution: heuristics.
5 An other approach: hypergraph model.

F.-H. Rouet On computing arbitrary entries of A−1 3 / 23



Partial computation of A−1

Central idea

Computing a set of entries in A−1 involves the solution of several linear
systems. An efficient algorithm has to take advantage of the sparsity of A and
the right-hand sides.

Approach
1 Graph representation of the problem.

2 Computing a single entry: exploit sparsity.
3 Computing a set of entries: a combinatorial problem.
4 Characterization of a solution: heuristics.
5 An other approach: hypergraph model.

F.-H. Rouet On computing arbitrary entries of A−1 3 / 23



Partial computation of A−1

Central idea

Computing a set of entries in A−1 involves the solution of several linear
systems. An efficient algorithm has to take advantage of the sparsity of A and
the right-hand sides.

Approach
1 Graph representation of the problem.
2 Computing a single entry: exploit sparsity.

3 Computing a set of entries: a combinatorial problem.
4 Characterization of a solution: heuristics.
5 An other approach: hypergraph model.

F.-H. Rouet On computing arbitrary entries of A−1 3 / 23



Partial computation of A−1

Central idea

Computing a set of entries in A−1 involves the solution of several linear
systems. An efficient algorithm has to take advantage of the sparsity of A and
the right-hand sides.

Approach
1 Graph representation of the problem.
2 Computing a single entry: exploit sparsity.
3 Computing a set of entries: a combinatorial problem.

4 Characterization of a solution: heuristics.
5 An other approach: hypergraph model.

F.-H. Rouet On computing arbitrary entries of A−1 3 / 23



Partial computation of A−1

Central idea

Computing a set of entries in A−1 involves the solution of several linear
systems. An efficient algorithm has to take advantage of the sparsity of A and
the right-hand sides.

Approach
1 Graph representation of the problem.
2 Computing a single entry: exploit sparsity.
3 Computing a set of entries: a combinatorial problem.
4 Characterization of a solution: heuristics.

5 An other approach: hypergraph model.

F.-H. Rouet On computing arbitrary entries of A−1 3 / 23



Partial computation of A−1

Central idea

Computing a set of entries in A−1 involves the solution of several linear
systems. An efficient algorithm has to take advantage of the sparsity of A and
the right-hand sides.

Approach
1 Graph representation of the problem.
2 Computing a single entry: exploit sparsity.
3 Computing a set of entries: a combinatorial problem.
4 Characterization of a solution: heuristics.
5 An other approach: hypergraph model.

F.-H. Rouet On computing arbitrary entries of A−1 3 / 23



Graph representation

We consider a sparse matrix A, and a factorization A = L U.
1 We work on the pattern of A and its factors L and U.

2 The pattern is represented by a graph.
3 This graph is tidied of the redundant information ⇒ elimination tree.



1 X X
2 X X X
X 3 F2 X

X 4 F1
X X F2 F1 5 F2 X

X X F2 6 X
X X 7



→

1

4

5 3

2

6

7

→

4

6

5

1 2

3

7

F.-H. Rouet On computing arbitrary entries of A−1 4 / 23



Graph representation

We consider a sparse matrix A, and a factorization A = L U.
1 We work on the pattern of A and its factors L and U.
2 The pattern is represented by a graph.

3 This graph is tidied of the redundant information ⇒ elimination tree.



1 X X
2 X X X
X 3 F2 X

X 4 F1
X X F2 F1 5 F2 X

X X F2 6 X
X X 7


→

1

4

5 3

2

6

7

→

4

6

5

1 2

3

7

F.-H. Rouet On computing arbitrary entries of A−1 4 / 23



Graph representation

We consider a sparse matrix A, and a factorization A = L U.
1 We work on the pattern of A and its factors L and U.
2 The pattern is represented by a graph.
3 This graph is tidied of the redundant information ⇒ elimination tree.



1 X X
2 X X X
X 3 F2 X

X 4 F1
X X F2 F1 5 F2 X

X X F2 6 X
X X 7


→

1

4

5 3

2

6

7

→

4

6

5

1 2

3

7

F.-H. Rouet On computing arbitrary entries of A−1 4 / 23



Computing a single entry in A−1

We use the approach implemented in MUMPS during Tz. Slavova’s PhD. It relies
on:

A traditional solution phase: a−1i,j = (A−1ej)i

The use of a direct solver: once one has factorized A (e.g. A = L U), a−1i,j
can be obtained by: {

y = L−1ej

a−1i,j = (U−1y)i

Sparsity is exploited using a theorem by Gilbert.

F.-H. Rouet On computing arbitrary entries of A−1 5 / 23



Computing a single entry in A−1

We use the approach implemented in MUMPS during Tz. Slavova’s PhD. It relies
on:

A traditional solution phase: a−1i,j = (A−1ej)i

The use of a direct solver: once one has factorized A (e.g. A = L U), a−1i,j
can be obtained by: {

y = L−1ej

a−1i,j = (U−1y)i

Sparsity is exploited using a theorem by Gilbert.

F.-H. Rouet On computing arbitrary entries of A−1 5 / 23



Computing a single entry in A−1

We use the approach implemented in MUMPS during Tz. Slavova’s PhD. It relies
on:

A traditional solution phase: a−1i,j = (A−1ej)i

The use of a direct solver: once one has factorized A (e.g. A = L U), a−1i,j
can be obtained by: {

y = L−1ej

a−1i,j = (U−1y)i

Sparsity is exploited using a theorem by Gilbert.

F.-H. Rouet On computing arbitrary entries of A−1 5 / 23



Computing a single entry in A−1

The following result takes advantage of the sparsity:

Theorem [derived from Gilbert, ’86]

To compute a particular entry a−1i,j in A−1, one needs to follow:
the path from j up to the root node (solution of Ly = ej).
the path going back from the root to node i (a−1i,j = (U−1y)i ).

Example: traversal of the tree for the computation of a−13,1.

4

6

5

1 2

3

7

Ly=e =(U
1

-1
3,1a y)

-1
3

F.-H. Rouet On computing arbitrary entries of A−1 6 / 23



Experiments: interest of exploiting sparsity

Experiments: computation of the diagonal of the inverse of matrices from data
fitting in Astrophysics (CESR, Toulouse)

Matrix Time (s)
size No ES ES
46,799 6,944 472
72,358 27,728 408
148,286 >24h 1,391

F.-H. Rouet On computing arbitrary entries of A−1 7 / 23



Computing a set of entries of A−1

When computing several entries at the same time: nodes in common are
loaded only once.

Example: when computing a−13,1 and a−15,5,
second accesses to 5, 6, 7 are spared.

4

6

5

1 2

3

7

Ly=[e 
1 5

=(U
-1
3,1a y)

-1
3,5,e ] 

In an out-of-core context, the solution time is dominated by the I/O, and
an access to a node = an access to the hard disk.
When one wants to compute a large number of entries of the inverse, the
set of associated right-hand sides is divided into several blocks. ⇒ is there
a way to form the blocks such that the number of accesses is minimized ?

F.-H. Rouet On computing arbitrary entries of A−1 8 / 23



Computing a set of entries of A−1

When computing several entries at the same time: nodes in common are
loaded only once.

Example: when computing a−13,1 and a−15,5,
second accesses to 5, 6, 7 are spared.

4

6

5

1 2

3

7

Ly=[e 
1 5

=(U
-1
3,1a y)

-1
3,5,e ] 

In an out-of-core context, the solution time is dominated by the I/O, and
an access to a node = an access to the hard disk.

When one wants to compute a large number of entries of the inverse, the
set of associated right-hand sides is divided into several blocks. ⇒ is there
a way to form the blocks such that the number of accesses is minimized ?

F.-H. Rouet On computing arbitrary entries of A−1 8 / 23



Computing a set of entries of A−1

When computing several entries at the same time: nodes in common are
loaded only once.

Example: when computing a−13,1 and a−15,5,
second accesses to 5, 6, 7 are spared.

4

6

5

1 2

3

7

Ly=[e 
1 5

=(U
-1
3,1a y)

-1
3,5,e ] 

In an out-of-core context, the solution time is dominated by the I/O, and
an access to a node = an access to the hard disk.
When one wants to compute a large number of entries of the inverse, the
set of associated right-hand sides is divided into several blocks. ⇒ is there
a way to form the blocks such that the number of accesses is minimized ?

F.-H. Rouet On computing arbitrary entries of A−1 8 / 23



Shape of an optimal solution

First, we have studied some properties of the problem; we have proposed:
A lower bound of the minimum number of accesses.

A necessary and sufficient condition. Here we provide only a (weaker)
sufficient condition.
We use the notion of encompassing tree of a block of entries: smallest tree
containing these entries.

Example: with a−14,4 and a−12,2, the
encompassing tree is {5, 4, 3, 2}.

4

6

5

1 2

3

7

F.-H. Rouet On computing arbitrary entries of A−1 9 / 23



Shape of an optimal solution

First, we have studied some properties of the problem; we have proposed:
A lower bound of the minimum number of accesses.
A necessary and sufficient condition. Here we provide only a (weaker)
sufficient condition.

We use the notion of encompassing tree of a block of entries: smallest tree
containing these entries.

Example: with a−14,4 and a−12,2, the
encompassing tree is {5, 4, 3, 2}.

4

6

5

1 2

3

7

F.-H. Rouet On computing arbitrary entries of A−1 9 / 23



Shape of an optimal solution

First, we have studied some properties of the problem; we have proposed:
A lower bound of the minimum number of accesses.
A necessary and sufficient condition. Here we provide only a (weaker)
sufficient condition.
We use the notion of encompassing tree of a block of entries: smallest tree
containing these entries.

Example: with a−14,4 and a−12,2, the
encompassing tree is {5, 4, 3, 2}.

4

6

5

1 2

3

7

F.-H. Rouet On computing arbitrary entries of A−1 9 / 23



Shape of an optimal solution

Theorem: sufficient condition for reaching the lower-bound

The encompassing trees of the blocks of requested entries do not intersect, or
intersect only in one node.

Example: nodes 3, 4, 10, 11, 12 and 13 are requested, and the block size is 2.

7

14

13

9

11108

126

1 2 54

3

This partitioning reaches the lower bound.

F.-H. Rouet On computing arbitrary entries of A−1 10 / 23



Shape of an optimal solution

A first intuitive attempt to satisfy the previous condition is to use a topological
order of the elimination tree.
Idea: in a post-order traversal of the tree, all nodes in a subtree have
consecutive numbers.
Example: the block size is 3 and all the nodes are requested.

7

14

13

9

11108

126

1 2 54

3

F.-H. Rouet On computing arbitrary entries of A−1 11 / 23



Experiments

Experiments of the same set of matrices from Astrophysics:

Matrix Lower Factors loaded [MB]
size bound No ES Nat Po
46,799 11,105 137,407 12,165 11,628
72,358 1,621 433,533 5,800 1,912
148,286 9,227 1,677,479 18,143 9,450

The post-order provides good result for this set of experiments, but is it always
the case ?

F.-H. Rouet On computing arbitrary entries of A−1 12 / 23



More experiments...

Experiments on a set a various matrices: the ratio of number of accesses over
the lower bound is measured:

Matrix 10% diagonal 10% off-diag
CESR(46799) 1.01 1.28
af2356 1.02 2.09
boyd1 1.03 1.92
ecl32 1.01 2.31
gre1107 1.17 1.89
saylr4 1.06 1.92
sherman3 1.04 2.51
grund/bayer07 1.05 1.96
mathworks/pd 1.09 2.10
stokes64 1.05 2.35

⇒ topological orders provide good results for the diagonal case, but are not
efficient enough for the general case.

F.-H. Rouet On computing arbitrary entries of A−1 13 / 23



Improving topological orders

Some local strategies aiming at improving topological orders have been
studied:

Slight improvements in the diagonal case. . .
. . . but they could not be extended to the general case.

The general case is difficult because:
The lower bound seems to be a bad criterion. . .
. . . hence the previous condition might not be relevant.

F.-H. Rouet On computing arbitrary entries of A−1 14 / 23



Improving topological orders

Some local strategies aiming at improving topological orders have been
studied:

Slight improvements in the diagonal case. . .
. . . but they could not be extended to the general case.

The general case is difficult because:
The lower bound seems to be a bad criterion. . .
. . . hence the previous condition might not be relevant.

F.-H. Rouet On computing arbitrary entries of A−1 14 / 23



Hypergraph partitioning

Now we present a completely different approach, based on hypergraph
partitioning.

Hypergraph: H = (V,N ) is defined as a set of vertices V, and a set of nets
N . Every net is a subset of vertices.
Weights associated with vertices.
Cost c(ni ) is associated with net ni .

Vertex partition: Π = {V1, . . . ,VK}.
Connectivity: λ(ni ) is the number of partitions of Π in which ni has vertices.

Objective: Minimize

cutsize(Π) =
∑

ni∈N
(λ(ni )− 1)c(ni ) .

Constraint: Satisfy a balance on the partition weights (sum of the weights
of the vertices in each partition).

F.-H. Rouet On computing arbitrary entries of A−1 15 / 23



Hypergraph partitioning: an example

5V1

V3
V4

V2

2

1

7

9

10

6

4

n1

8

3

n3

2n

n4

10 vertices and 4 nets.

Partitioned into 4 parts:
{4, 5}, {7, 10}, {3, 8, 9}, {1, 2, 6}.

λ(n1) = 2, λ(n2) = 3
λ(n3) = 3, λ(n4) = 2

cutsize(Π) =
c(n1) + 2c(n2) + 2c(n3) + c(n4)

F.-H. Rouet On computing arbitrary entries of A−1 16 / 23



Hypergraph model for the diagonal case

Model for the diagonal case

Vertices: a vertex for each requested entry.
Nets: There is a net for each node corresponding to a requested

entry, initially containing that node.
There is a net for each intersection node (e.g. node 7).
A net is a super set of all the nets associated with nodes
that are descendants of its defining node.

Costs: the cost of a net is the sum of the sizes of the factors from its
defining node v to the first significant ancestor of v , e.g.,
c(n4) = w(4) + w(6).

7

14

13

9

11108

126

1 2 54

3

n
4

n
7

n
14

n
3

14

4

3

F.-H. Rouet On computing arbitrary entries of A−1 17 / 23



Hypergraph model: an example

We show that the cutsize is the extra cost induced by the partition:

n
7

n
3

n
4

n
14

7

14

13

9

11108

126

1 2 54

3

n
4

n
7

n
14

n
3

14

V
1

V
2

4

3

Epochs:
{

a−1
3,3, a

−1
14,14

}
and

{
a−1
4,4

}
.

Epoch Cost
1st w(3) + w(7) + w(14)
2nd w(4) + w(6) + w(7) + w(14)

Nets 7 and 14 are cut.

The cutsize is c(n7) + c(n14) = w(7) +w(14).

In any solution, we have to load 3, 4, 6, 7, and
14; having a bare minimum cost:
w(3) + w(4) + w(6) + w(7) + w(14).

F.-H. Rouet On computing arbitrary entries of A−1 18 / 23



Hypergraph model for the general case

The model is obtained by vertex amalgamation: consider the hypergraph
defined by the row subscripts and the hypergraph defined by the column
subscripts, and simply "sew" them:

n
7

n
3

n
4

n
4

n
7

n
14

n
3

14

n
14

V
1

V
2

7

14

13

9

11108

126

1 2 54

3

4

3

12

5

8
n

8

n
13

n
12

n
5

n
13

n
12

n
8

n
5

up

up

up

up

up

up

up

up

down

down

down

down

down

down

down

down

F.-H. Rouet On computing arbitrary entries of A−1 19 / 23



Experiments: hypergraph model

We use PaToH [Çatalyürek and Aykanat, ’99] for the tests. Here we measure
the ratio hypergraph / post-order:

Matrix 10% diagonal 10% off-diag
CESR(46799) 1.01 0.75
af2356 1.03 0.69
boyd1 1.03 0.54
ecl32 1,05 0.56
gre1107 0.86 0.80
saylr4 0.98 0.80
sherman3 0.97 0.65
grund/bayer07 0.97 0.72
mathworks/pd 0.94 0.60
stokes64 0.99 0.80

Diagonal case: no gain, except for "tough" problems.
General case: on average, a gain of 30%.

F.-H. Rouet On computing arbitrary entries of A−1 20 / 23



Remarks on the hypergraph model

Flexibility of the epochs sizes

In the previous experiments, no unbalance of the block sizes was allowed. In
pratice, some sloppiness in the number of RHS per epoch, and hypergraph
partitioning tools naturally exploit this leeway.

Structure of the model
Our hypergraphs are peculiar because the nets are nested; this could be
exploited.
The hypergraph becomes rapidly dense. If the number of requested entries
is large, partitioning can be really expensive (in terms of memory and
running time) ⇒ develop algorithms that work directly on the tree itself,
"hiding" the underlying hypergraph.

F.-H. Rouet On computing arbitrary entries of A−1 21 / 23



Conclusion

Conclusions
This combinatorial problem is interesting and significant gains can be
expected.
Several approaches have been considered.
The methods presented here show promising results.

Perspectives

Several extensions and improvements can be studied:
In-core case.
Multiple entries per RHS.
Parallel environment.
Compressed representations of the problem.
. . .

F.-H. Rouet On computing arbitrary entries of A−1 22 / 23



Conclusion

Thank you for your attention !

Any questions ?

F.-H. Rouet On computing arbitrary entries of A−1 23 / 23



References

Y. E. Campbell and T. A. Davis.
Computing the sparse inverse subset: an inverse multifrontal approach.
Technical Report TR-95-021, CIS Dept., Univ. of Florida, 1995.

UV. Çatalyurek and C. Aykanat.
PaToH: partitioning tool for hypergraphs.
User’s guide, 1999.

A. M. Erisman and W. F. Tinney.
On computing certain elements of the inverse of a sparse matrix.
Comm. ACM, 18:177–179, 1975.

J. R. Gilbert and J. W. H. Liu.
Elimination structures for unsymmetric sparse LU factors.
SIAM J. Matrix Analysis and Applications, 1993.

Tz. Slavova.
Parallel triangular solution in an out-of-core multifrontal approach for solving large sparse linear
systems.
PhD thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2009.

K. Takahashi, J. Fagan, and M. S. Chen.
Formation of a sparse bus impedance matrix and its application to short circuit study.
In Power Industry Computer Applications Conference, pages 63–69, 1973.

B. Uçar and C. Aykanat.
Revisiting hypergraph models for sparse matrix partitioning.
SIAM Review, 49:595–603, 2007.

F.-H. Rouet On computing arbitrary entries of A−1 - / -


